Análisis comparativo de la densidad y velocidad de ignición óptimas para la combustión completa del olote perteneciente al *Zea Mays L.*

Miguel Sebastián **Arroyo-López** Francis Michelle **Guerrero-Espinosa** Eduardo Roberto **Gutiérrez-Gualotuña**

Universidad de las Fuerzas Armadas (ESPE) Departamento de Ciencias de la Energía y Mecánica 171103 ECUADOR

> Tel. (593)999729004 correos electrónicos (emails): msarroyo@espe.edu.ec fmguerrero@espe.edu.ec

Recibido 02-04-2018, aceptado 28-09-2018.

Resumen

En el presente trabajo se presentan modelos matemáticos de los indicadores físicos que caracterizan el desempeño del material combustible estudiado, para la determinación de los parámetros óptimos de fabricación del olote del Zea Mays L. para su uso posterior como combustible. Como tales parámetros se seleccionan tamaño de grano, grado de compactación y la humedad. Se elaboran modelos matemáticos para la estimación de los poderes calóricos superior e inferior, velocidad de ignición superior e inferior y densidad obtenida como función de los parámetros de fabricación. Se deduce el modelo de optimización de ambos poderes calóricos, se determina el procedimiento de solución, se hallan valores óptimos de fabricación y se grafican los resultados de la optimización con respecto a los parámetros de fabricación. Finalmente se hallan las relaciones de estos indicadores con respecto a la velocidad de ignición y densidad obtenidas para evidenciar como la mejor configuración que maximiza el poder calórico incide en el comportamiento de estas variables.

Palabras clave: combustión de la biomasa, preparación óptima de la biomasa, olote de maíz como combustible.

Abstract

(Comparative Analysis of the Optimum Density and Ignition Speed for the Complete Combustion of the Corncob Belonging to the *Zea Mays L*.)

This paper shows mathematical models of the physical indicators that characterize the performance of the studied fuel material for the determination of the optimal manufacturing parameters of the corncob of Zea Mays L. for later use as a fuel. As such parameters are selected grain size, compaction level and moisture content. Mathematical models are elaborated for the estimation of the upper and lower caloric powers, upper and lower ignition speed and the density obtained as a function of the manufacturing parameters. The optimization model of both caloric powers is deduced and the solution procedure is determined. Optimal manufacturing values were found and the optimization results were plotted with respect to manufacturing parameters. Finally, the relations of these indicators with respect to the ignition speed and density obtained were found to show how the best configuration that maximizes the caloric power affects the behavior of these variables.

Index terms: biomass combustion, optimal preparation of biomass, corncob as fuel.

1. Introducción

Las reservas de combustibles fósiles se reducen muy rápidamente. Al mismo tiempo, el rápido crecimiento de la población y los ritmos crecientes de desarrollo económico incrementan la demanda de energía, impulsando al desarrollo de las diferentes alternativas de energías renovables económicamente viables. En la demanda mundial, la biomasa está proporcionando el 10% de la energía primaria limpia para la generación de calor, electricidad y combustibles para el transporte [1].

Al igual que en la época prehispánica, en la actualidad la tusa de maíz (olote de *Zea Mays L.*) constituye una alternativa de combustible para la generación de energía, solucionando el perjuicio de este residuo al entorno y reduciendo, por tanto, la dependencia de los combustibles fósiles y la contaminación ambiental [2].

La producción anual de maíz en el Ecuador alcanza aproximadamente las 1 300 000 ton/año lo que representa alrededor de 540 000 ton de biomasa residual, siendo el olote de maíz el de mayor abundancia. El destino priorizado actual de esta biomasa es el alimento de cerdos [3]. El uso de esta biomasa como vector energético ha sido hasta el presente muy escaso debido al insuficiente desarrollo tecnológico del país, poca difusión de las diferentes alternativas de energía renovable y la prevalencia del petróleo en la economía del país. Es por ello que tiene actualidad el uso de la biomasa del olote de maíz como biocombustible sólido, siendo una alternativa para el remplazo del GLP (gas licuado de petróleo) principalmente en los domicilios rurales, donde este combustible en muchos casos no llega a abastecer el mercado. Por otra parte, el olote de maíz es el residuo agrícola más abundante a nivel nacional y representa una fuente de energía térmica aprovechable para calderas, cocinas, biorreactores, entre otros [4].

Según la estrategia de generación de energía mediante fuentes renovables del Ecuador se encuentra la biomasa, con una presencia del 1.55% como biocombustible. Esta fuente tiene un potencial de desarrollo creciente [5]. En el sector agrícola el residuo del maíz es utilizado de manera empírica sin un criterio técnico, ya que existe una baja difusión del tema en las zonas rurales. Un reducido número de empresas hacen uso de este biocombustible en sustitución de la leña, pero no de una forma industrial. Así, se comprueba que esta biomasa se puede utilizar en la producción de energía térmica [6], por lo cual adquiere importancia el análisis de las propiedades óptimas que mejoran el aprovechamiento de la misma.

El olote de maíz como vector energético ha sido objeto de briquetado centrado hacia la producción de combustibles sólidos combinados con carbón y otros residuos agrícolas, con adición de aglutinantes. En la producción de briquetas, los materiales se pueden comprimir sin adhesivos, mientras que en otros se agregan materiales adhesivos (aglutinantes) para ayudar a mantener las partículas del material compactadas, en correspondencia al tipo de materia prima utilizada para la fabricación de las briquetas [7]. En el proceso de experimentación de este artículo no se usó ningún tipo de aglutinante, con el fin de obtener la eficiencia real del poder calorífico del olote de maíz.

El estudio bibliográfico realizado no permitió encontrar antecedentes de la elaboración de modelos matemáticos que permitan estimar los parámetros de su preparación como combustible. Al hablar de la tusa de maíz como vector energético se requiere la utilización de métodos que permitan una preparación científicamente fundamentada para su uso eficiente como combustible, con el objetivo de aumentar su eficiencia, encontrando un balance entre la densidad de las pastillas y la velocidad de ignición de las mismas, para obtener un biocombustible sólido capaz de mantenerse produciendo una combustión completa, encendido el mayor periodo de tiempo, reduciendo al máximo los contaminantes generados por la postcombustión y generando el máximo poder calórico posible [8].

En este artículo se comparan diferentes variables de desempeño de la biomasa estudiada con el fin de mejorar la eficiencia energética, y definir la mejor alternativa.

2. Materiales y métodos

El olote de maíz para su uso posterior como combustible requiere de cierto grado de compactación para los posibles tamaños de grano obtenidos en la molienda de la misma y un porcentaje de humedad determinado de la muestra. Con el fin de obtener los poderes calóricos y velocidades de ignición superior e inferior del olote se utilizó una bomba calorimétrica adiabática Gallenkamp, la que mide la temperatura de combustión con un termómetro de mercurio bajo condiciones certificadas (5761 NPL 78) cada 0.01 °C.

Para la caracterización de los productos obtenidos se organizó un experimento 3^{N} que incluye las variables independientes: tamaño de grano (*TG*), grado de compactación (*GC*) y humedad (*Hu*).

El secado del olote de maíz se lo realizó al aire libre (véase Fig.1a) en diferentes periodos de tiempo, correspondientes a los valores de humedad a alcanzar. El olote, previamente secado desde una humedad inicial de 39% (véase Fig.1b), fue molido y tamizado para obtener tamaños de grano uniformes con las dimensiones 0,425; 1; 2 mm (véase Fig. 2); los niveles de compactación se establecieron en los valores de 0,75; 1 y 1,25 toneladas, con el fin de variar la densidad de la materia prima, con una masa estándar de 0.8 g por pastilla, el que constituye un requerimiento para las pruebas de la bomba calorimétrica adiabática.

Fig. 1. Secado de las tusas de maíz al aire libre (a) y humedad inicial de las tusas (b).

Fig. 2. Granos de olote de maíz molido y tamizado para obtención de tamaños de grano uniformes.

El olote molido fue compactado en sus diferentes configuraciones (véase Fig. 3) en una máquina universal AMSLER capacidad 10 toneladas, la que cuenta con un mantenedor de carga para que la presión aplicada sea constante, obteniendo así los grados de compactación requeridos de la investigación. Las muestras se compactaron dentro de una matriz de ½ pulgada de diámetro debido a que estas dimensiones eran necesarias para que la muestra ingrese dentro del crisol de la bomba calorimétrica adiabática.

En estudios previos, la compactación de las pastillas del olote se realizó a una tonelada para determinar el mayor poder calórico dentro de las condiciones de experimentación propuestas en la bibliografía [9], por lo que se decidió tomar este valor y realizar probetas compactadas en un intervalo de $\pm 50\%$ para verificar sus propiedades físicas. El análisis determinó

Fig. 3. Muestras compactadas de olote de maíz.

que las pastillas con valores mayores a 1,25 toneladas perdían ciertas propiedades, siendo de mayor influencia la humedad y las pastillas con valores menores a 0,75 toneladas tenían partículas que se desprendían muy fácilmente por lo que se dificultaba su manipulación. Debido a esto se seleccionó como grados de compactación para el experimento 0,75, 1 y 1,25 toneladas.

En la Tabla 1 se muestran las variables de decisión de la investigación, aquellas que al ser modificadas hacen variar la capacidad calorífica de la biomasa dada.

Para la selección de los valores de humedad se tomó en consideración que el porcentaje de humedad de la biomasa en general debe oscilar entre 8-12%para utilizarlo como biocombustible [10], debido a esto para la experimentación se consideraron humedades menores al 8%, mayores al 12% y una humedad intermedia entre estos rangos para determinar el comportamiento del olote de maíz en estos valores.

En la etapa de secado de las muestras, la humedad se midió con un higrómetro digital en diferentes periodos, seleccionando una cantidad de 80 muestras cada vez que alcanzaban una humedad determinada por los rangos del experimento, para proceder a guardarlas en recipientes plásticos herméticos, en un lugar fresco y seco donde no pueda adquirir humedad del exterior. Luego de que las muestras fueran molidas se procedió a medir su humedad final para trabajar con este valor en los experimentos. Los granos de maíz fueron tamizados y almacenados en los mismos recipientes plásticos herméticos.

La bomba calorimétrica fue calibrada con ácido benzoico estándar primario (B.C.S. No. 190k) bajo condiciones certificadas de 26454 kJ/kg. Las medidas se realizaron de acuerdo con la norma ASTM D4868 [11] con una precisión del 0,1 %.

Se quemó una muestra de ácido benzoico en la bomba calorimétrica adiabática para obtener la capacidad total calorífica de

Tabla 1. Parámetros de variación en el proceso de combustión de la
bomba calorimétrica adiabática.

Factores	VARIABLES		NIVELES		
		ALTO	MEDIO	BAJO	
% Humedad	Hu %	13.76	9.13	6.25	
Tamaño de grano	TG (mm)	2	1	0.425	
Grado de					
compactación	GC (ton)	1.25	1.00	0.75	

la máquina (11022.5 J/°C) [9]; se utiliza el mismo procedimiento para muestras líquidas y sólidas.

Las muestras fueron quemadas en sus 27 configuraciones, respectivamente, tomándose como datos la temperatura final y el tiempo en el cual la muestra se combustionó completamente y como referencia una temperatura inicial de 21°C. Con estos datos se calculó los poderes calóricos y velocidades de ignición inferior y superior. En el último caso el procedimiento prevé la colocación de una gota de agua en el recinto donde se realiza la combustión.

Para la obtención de los valores del poder calórico y velocidad de ignición, se consideraron como factores constantes ciertas variables que permiten alcanzar la combustión completa del olote de maíz en la bomba calorimétrica adiabática, las que se encuentran en la Tabla 2.

Los errores de medición presentes en la experimentación se presentan en la Tabla 3.

Así, el error de medición se determina por el error de la bomba calorimétrica. Este factor, unido a otros posibles factores casuales, determinó la realización de 9 réplicas para evidenciar

Tabla 2. Variables de operación que se mantienen constantes en el proceso de combustión en la bomba calorimétrica adiabática.

VARIABLES DE OPERACIÓN CONSTANTES					
Temperatura Inicial2Masa de la muestra0Presión de oxígeno1	21°C).8 g 5 bar				

la influencia de todos los factores aleatorios, incluyendo los errores de medición, en las ecuaciones de estimación realizadas, llegando a un total de 486 experimentos.

El experimento se realizó en condiciones de estacionamiento del proceso, pues se requiere precisamente estimar el comportamiento en estado estacionario de los indicadores de desempeño.

Como resultado del procesamiento se obtuvieron los siguientes modelos para la estimación de los poderes calóricos inferior (*PCI*) y superior (*PCS*).

$$PCI = 106389 + 16676.5GC + 5.71GC^{2}Hu^{2} - 105898GC^{0.1225} Hu^{0.0812} + 1022.9Hu + 96.83TG^{2} GC^{2} + 8875.59TG^{0.0276} Hu^{0.0812}$$
(1)

Se obtuvieron los siguientes indicadores de calidad de la estimación:

R-cuadrado = 79,3775 % Error estándar de estimación = 567,308

$$PCS = -49368.6 + 2.91GC^{2}Hu^{2} + 492.4Hu - 34.14Hu^{2} + 698.61TG^{2} - 792.68TG^{2}GC^{2} + 3.64TG^{2}GC^{2}Hu^{2} - 3.18TG^{2}Hu^{2} + 65488.4TG^{0.003}Hu^{0.0135}$$
(2)

Se obtuvieron los siguientes indicadores de calidad de la estimación:

```
R-cuadrado = 74,6446 %
Error estándar de estimación = 397,788
Donde:
GC: grado de compactación
Hu: porcentaje de humedad
TG: tamaño de grano
```

Equipo de medición	Clase de precisión instrumento	Valor medio medido	Error de determinación
Calibrador Stanley precisión 0.025 mm	0.025 mm	8 mm	$\pm 0.2 \text{ mm}$
Higrómetro DUSIEC Modelo MD 812	0.1%	10%	±1 %
Balanza Kern Modelo PCB 1000-2	0.0125 g	0.8 g	$\pm 0.01 \text{ g}$
Bomba calorimétrica adiabática Gallenkamp	0.2%	22.24%	± 4.45%

También se hallaron modelos para la estimación de la densidad (D) y la velocidad de ignición tanto inferior (VI) como superior (VS).

$$VI = -1.41 + 0.09GC - 0.025GC^{2} - 0.000014GC^{2}Hu^{2} + 1.35GC^{-0.3248} - 1.62GC^{-0.3248}Hu^{-0.1013} + 0.0008Hu + 1.58Hu^{-0.1013} - 0.005TG + 0.0006TG^{2}GC^{2} - 0.000003TG^{2}GC^{2}Hu^{2} + 0.000005TG^{2}Hu^{2} + 1.36TG^{0.1013} - 1.42TG^{0.1003}GC^{-0.3248} - 1.75TG^{0.1003}Hu^{-0.1013} + 1.87TG^{0.1003}GC^{-0.3248}Hu^{-0.10132}$$
(3)

Se obtuvieron los siguientes indicadores de calidad:

R-cuadrado = 71,7004 % Error estándar de estimación = 0,000383126

$$VS = -1.63 + 0.012GC - 0.000026GC^{2}Hu^{2} + 6.85GC^{-0.2107} - 6.56GC^{-0.2107}Hu^{0.0156} + 0.0012Hu + 6.42Hu^{0.0156} - 0.001TG + 0.0000016TG^{2}Hu^{2} + 4.27TG^{0.1232} - 3.9TC^{0.1232}GC^{-0.2107} - 4.09TG^{0.1232}Hu^{0.0156} + 3.81TG^{0.1232}GC^{-0.2107}Hu^{0.0156} + (4)$$

Se obtuvieron los siguientes indicadores de calidad:

R-cuadrado = 71,6346 % Error estándar de estimación = 0,000247089

 $D = 2610.96 - 2364.19GC + 401.73GC^{2} + 1.74Hu^{2}$ - 152.25TG + 47.73TG²GC² - 0.165TG²Hu² - 24171.9TG^{-0.1039} + 28965.6TG^{-0.1039}GC^{0.0586} - 4108.57TG^{-0.1039}GC^{0.0586}Hu^{0.0512}

(5)

Se obtuvieron los siguientes indicadores de calidad:

R-cuadrado = 77,0858 % Error estándar de estimación = 39,8641

El modelo matemático de optimización del poder calórico inferior se formula como:

$$\begin{split} max_{PCI(TG,GC,Hu)} &106389 + 16676.5GC + 5.71GC^{2}Hu^{2} \\ &- 105898GC^{0.1225}Hu^{0.0812} + 1022.9Hu \\ &+ 96.83TG^{2}GC^{2} + 8875.59TG^{0.0276}Hu^{0.0812} \end{split}$$

(6)

Mientras que para el poder calórico superior se formula como:

$$max_{PCS(TG,GC,Hu)} - 49368.6 + 2.91GC^{2}Hu^{2} + 492.4Hu + 34.14Hu^{2} + 698.61TG^{2} - 792.68TG^{2}GC^{2} + 3.64TG^{2}GC^{2}Hu^{2} - 3.18TG^{2}Hu^{2} + 65488.4TG^{0.003}Hu^{0.0135}$$
(7)

3. Resultados

Como método de solución se utiliza el método de *exploración en una red de variables*. La selección de este método se realiza con el fin de evitar mínimos locales en las soluciones finales, por el carácter exploratorio del método [12].

Se realizaron variaciones de los intervalos de determinación de las variables independientes, obteniéndose siempre la misma solución de punto óptimo: GC=1.25 ton, TG=2 mm, Hu = 13.76 %, correspondientes al PCI = 20152,01 kJ/kg y la combinación GC=0.75 ton, TG=2 mm, Hu = 6.25 %, correspondiente al máximo valor del poder calórico superior PCS = 18644,19kJ/kg.

Para la solución óptima del poder calórico superior (*PCS*), la densidad de las pastillas es de 789,14 kg/m³ y la velocidad de ignición es de 0,0049 cm/s. Para la solución óptima del poder calórico inferior (*PCI*), la densidad de las pastillas es de 866,45 kg/m³ y la velocidad de ignición es de 0,0040 cm/s. La mejor configuración para maximizar la eficiencia en la combustión resulta del tamaño de grano de 2 mm para ambos poderes calóricos, el cual tiene como desventaja partículas compactadas de baja resistencia o con mucho espaciamiento entre ellas, por ello es recomendable trabajar con aglutinantes para poder aprovechar sus propiedades.

En la Fig. 4 se muestra la variación del poder calórico superior como función de los parámetros GC y TG para valores de Hude 6.25 y 13.76 %, respectivamente. Según puede observarse se obtiene una configuración cóncava del comportamiento de PC como función de GC y TG.

En la Fig. 5 se muestra la variación del poder calórico inferior como función de los parámetros GC y TG para valores de Hu de 6.25 y 13.76 %, respectivamente. Según puede observarse se obtiene una configuración convexa del comportamiento de PC como función de GC y TG.

La relación PCS/VS mostrada en la Fig. 6 se obtiene para el valor de *PCS* calculado como resultado de la optimización, entre el valor de *VS* calculado por la expresión (4), para todos los puntos donde se localizó la configuración de variables de desempeño para el punto de óptimo obtenido.

Fig. 4. Comportamiento del poder calórico superior como función de GC y TG para Hu = 6.25 y 13.76%.

Fig. 5. Comportamiento del poder calórico inferior como función de GC y TG para Hu = 6.25 % y 13.76%.

La relación *PCS/D* mostrada en la Fig. 7 se obtiene para el valor de *PCS* calculado como resultado de la optimización, entre el valor de *D* calculado por la expresión (5), para todos los puntos donde se localizó la configuración de variables de desempeño para el punto de óptimo obtenido.

La relación *PCI/VI* mostrada en la Fig. 8 se obtiene para el valor de *PCI* calculado como resultado de la optimización, entre el valor de *VI* calculado por la expresión (3), para todos los puntos donde se localizó la configuración de variables de desempeño para el punto de óptimo obtenido.

■ 220,00-240,00 ■ 240,00-260,00 ■ 260,00-280,00 ■ 280,00-300,00 ■ 300,00-320,00

Fig. 9. Relación PCI/D, donde se encuentra el punto óptimo.

La relación PCI/D mostrada en la Fig. 9 se obtiene para el valor de PCI calculado como resultado de la optimización, entre el valor de D calculado por la expresión (5), para todos los puntos donde se localizó la configuración de variables de desempeño para el punto de óptimo obtenido.

4. Conclusiones

El trabajo realizado permite extraer las siguientes conclusiones principales:

- Las soluciones correspondientes al máximo valor de poder calórico inferior son GC=1.25 ton, TG=2 mm, Hu=13.76 %.
- Las soluciones correspondientes al máximo valor de poder calórico superior son GC = 0.75 ton, TG = 2 mm, Hu = 6.25 %.
- El modelo matemático realizado para estimación de PCS y PCI muestra el cruce de ambas, como consecuencia del carácter cóncavo y convexo respectivamente de ambos modelos, lo que determina que para ciertos valores de las variables independientes *PCI* superen a *PCS*.

- La solución óptima correspondiente al *PCS* (Hu = 6.25%, TG = 2 mm, GC = 0.75 ton) y al *PCI* (Hu = 13.76%, TG = 2 mm, GC = 1.25 ton) se relaciona con un tamaño de grano de 2 mm, que corresponden a partículas muy frágiles dado su gran espaciamiento mutuo, para lo que se recomienda usar aglutinantes para aprovechar su uso como biocombustible eficiente.

- Para la solución óptima del poder calórico superior (PCS), la densidad de las pastillas es de 789,14 kg/m³ y la velocidad de ignición es de 0,0049 cm/s, lo que muestra que para maximizar el poder calórico superior se necesita de una densidad baja y una velocidad de ignición moderada comparando con los resultados experimentales obtenidos.
- Para la solución óptima del poder calórico inferior (*PCI*), la densidad de las pastillas es de 866,45 kg/m³ y la velocidad de ignición es de 0,0040 cm/s, lo que muestra que para maximizar el poder calórico inferior se necesita de una densidad moderada y una velocidad de ignición baja comparando con los resultados experimentales obtenidos.
- Los valores de velocidad de ignición superior e inferior y densidad asociados a los poderes calóricos superior e inferior óptimos se encuentran dentro de sus intervalos de variación y no en sus extremos.
- Los valores de *R* cuadrado de las ecuaciones obtenidas fueron encontrados en primera instancia, esto quiere decir que se los puede mejorar, cambiando a instrumentos de medición con mayor precisión y apreciación, para así disminuir los errores existentes en el diseño de la experimentación.

Agradecimiento

A la Universidad de las Fuerzas Armadas ESPE, al Departamento de Ciencias de la Energía y Mecánica, a la Carrera de Ingeniería Mecánica, al Laboratorio de Conversión de Energía, a los Docentes, Tutores, por su importante ayuda en el desarrollo y concreción del presente trabajo de Investigación.

En fin, agradecer a todos quienes colaboraron desinteresadamente.

Agradecemos también al PhD. José Arzola Ruiz por su colaboración en el modelado matemático.

Referencias

- [1] International Energy Agency (IEA) Bioenergy, Bioenergy-A Sustainable and Reliable Energy Source, A Review of Status and Prospects, IEA Bioenergy: Paris, France, 2009.
- J. Forero, "Tusa de maíz: Una Fuente de energía renovable," *Revista Universitas Científica*, vol. 16, no. 2, 2013, pp. 1-4. Consultado el: 20 de octubre del 2017. Disponible en: https://revistas.upb.edu.co/index.php/ universitas/article/view/2202

- M. Castro, *Rendimientos de maíz duro seco en invierno* 2016, Ministerio de Agricultura, Ganadería, Acuacultura y Pesca, 2016. Consultado el: 17 noviembre del 2017. Disponible en: http://sinagap.agricultura.gob.ec/pdf/ estudios_agroeconomicos/rendimiento_maiz_duro_ seco_invierno2016.pdf
- [4] Ministerio de Electricidad y Energía Renovable (MEER), *Plan Nacional de Eficiencia Energética 2016*, pp. 20-35, 2016. Consultado el: 2 de noviembre del 2017. Disponible en: http://www.energia.gob.ec/
- [5] Agencia de Regulación y Control de Electricidad (ARCONEL), "Ecuador posee un 51,78% de energía renovable," *Revista Nacional*, 2016. Consultado el: 5 noviembre del 2017. Disponible en: http://www.regulacion electrica.gob.ec/ecuador-posee-un-5155-de-energiarenovable/
- [6] S. Bonilla-Quilumba, J. Méndez, "Utilización de diferentes niveles de maíz de desecho con tusa molida más melaza en la alimentación de cuyes," *Revista Ciencia UNEMI*, vol. 8, no. 15, septiembre 2015, pp. 96-101. Consultado el: 15 de agosto del 2017 Disponible en: http:// ojs.unemi.edu.ec/index.php/cienciaunemi/article/view/ 203 ISSN: 1390-4272
- [7] I. Ikelle, O. Ivoms, "Determination of the Heating Ability of Coal and Corn Cob Briquettes," *IOSR Journal of*

Applied Chemistry, vol. 7, no. 2, pp 77-82, 2014. Disponible en: http://iosrjournals.org/iosr-jac/papers/ vol7-issue2/Version-1/M07217782.pdf

- [8] J. T. Oladeji, C. C. Enweremadu, "The Effects of Some Processing Parameters on Physical and Densification Characteristics of Corncob Briquettes," *International Journal of Energy Engineering*, vol. 2, no. 1, pp. 22-27, 2012. Consultado el: 15 de agosto del 2017. Disponible en: https://doi.org/10.5923/j.ijee.20120201.04
- [9] C. Espinoza, G. Torres, "Determinación de las características energéticas de la tusa de maíz con variación del contenido de humedad, densidad y relación aire combustible," Tesis de Maestría en Energías Renovables, Universidad de las Fuerzas Armadas ESPE, 2015. Disponible en: http://repositorio.espe.edu.ec/xmlui/ handle/21000/10698? show=full
- [10] M. Ortega, *Energías renovables*, 2a ed., Madrid, España: Paraninfo, 2000.
- [11] ASTM International, ASTM D4868-00: Standard Test Method for Estimation of Net and Gross Heat of Combustion of Burner and Diesel Fuels, 2010. Consultado el 10 de enero de 2018, Disponible en: http:/ /www.astm.org/Standards/D4868.htm
- [12] J. Arzola-Ruiz, *Sistemas de ingeniería*, 2a ed., La Habana: Ed. Félix Varela, 2012.